РОБАСТНАЯ УСТОЙЧИВОСТЬ ИНТЕРВАЛЬНЫХ ЛИНАМИЧЕСКИХ СИСТЕМ

Оморов Р. О.

Институт физико-технических проблем и материаловедения НАН КР Бишкек, Кыргызстан, romano_ip@list.ru

Аннотация: Рассмотрены некоторые сравнительные характеристики известных результатов, полученных в работах широко известных авторов алгебраического направления по проблемам робастной устойчивости

Ключевые слова: вектора состояния, интервальная матрица, робастная устойчивость, величина

ROBUST STABILITY OF INTERVAL DYNAMIC SYSTEMS

Omorov R. O.

Institute of physicotechnical problems and materials science of the NAS of the KR, Bishkek, Kyrgyzstan

Abstract: Some comparative characteristics of known results obtained in the works of well-known authors of algebraic direction on problems of robust stability **Key words:** State vector, interval matrix, robust stability, quantity

Введение. Работа В.Л. Харитонова [12] вызвала огромный интерес к проблеме исследований робастности интервальных динамических систем [2-11]. В современной теории интервальных динамических систем существуют два альтернативных направления [5,6,9-11]: 1) алгебраическое или Харитоновское направление; 2) частотное или направление Цыпкина – Поляка.

В настоящей работе рассматривается алгебраический метод исследования робастности как непрерывных, так и дискретных интервальных динамических систем, основы которой заложены в работах [7, 8].

Постановка задачи. Рассматриваются линейные динамические системы порядка $\dot{x} = Ax, x(t_0) = x_0,$ (1)

и, дискретная
$$x(m+1) = Ax(m), m = 1,2,3,...,$$
 (2)

где $x = x(t) \in R^n$, x(m) - вектора состояния, $A \in R^{nxn}$ - интервальная матрица с элементами a_{ij} , $i, j = \overline{1,n}$, представляющие интервальные величины $a_{ij} \in [\underline{a}_{ij}, \overline{a}_{ij}]$ с угловыми значениями \underline{a}_{ij} , \overline{a}_{ij} , $\underline{a}_{ij} \leq \overline{a}_{ij}$.

Требуется определить условия робастной устойчивости систем (1) и (2).

I. Непрерывные системы

Основные результаты. В основополагающей для рассматриваемого метода работе [7] получены результаты в виде строго доказанных теоремы 1 и леммы к ней (приведены ниже) о робастной устойчивости систем (1) по условиям гурвицевести четырех угловых полиномов Харитонова, составленным по последовательным сепаратным угловым коэффициентам b_i , $(\underline{b}_i, \overline{b}_i, i = \overline{1,n})$ характеристических полиномов системы (1):

$$f(\lambda) = \lambda^{n} + b_{1}\lambda^{n-1} + \dots + b_{n} = 0.$$
 (3)

Теорема. Для того чтобы положение равновесия x=0 системы (1) было асимптотически устойчиво при всех $A \in D$ или, чтобы интервальная матрица A была устойчива, необходимо и достаточно, чтобы были гурвицевы все четыре угловые полиномы Харитонова, составленные по последовательным сепаратным угловым коэффициентам b_i , $(b_i, \overline{b_i}, i=\overline{1,n})$ характеристических полиномов (3) системы (1).

Лемма. Сепаратные угловые коэффициенты b_i , $(\underline{b}_i, \overline{b}_i, i = \overline{1,n})$ образуются как соответствующие коэффициенты полиномов (3), либо при угловых значениях элементов a_{ij} , i, $j = \overline{1,n}$, матрицы A, либо при нулевых значениях некоторых элементов (если интервал принадлежности включает нуль).

Как нетрудно видеть из леммы, для нахождения коэффициентов b_i , $(\underline{b}_i, \overline{b}_i, i = \overline{1,n})$, в общем случае необходимо применение оптимизационных методов нелинейного программирования [13].

К теореме, доказательство которой приведено в приложении работы [7], необходимо сделать следующее уточняющее замечание.

Замечание. Из основного аргумента доказательства теоремы, связанного с наличием четырех угловых полиномов Харитонова следует, что при отсутствии полного множества (набора) из четырех угловых полиномов условия теоремы необходимы, но могут быть недостаточны для устойчивости системы (1).

Случай, соответствующий приведенному *замечанию* может возникнуть тогда, когда сепаратные угловые коэффициенты полиномов (3) взаимосвязаны и в итоге сужают набор угловых коэффициентов до количества менее четырех.

Следует отметить, что *замечание* снимает выводы работы [18] относительно робастной устойчивости интервальных динамических систем. При этом данное утверждение проиллюстрировано на примерах, приведенных ниже в конце раздела.

Справедливость доказанной теоремы подтверждается аннулированием известных контрпримеров к теореме Биаласа [15].

Так, теорема апробирована на различных контрпримерах теоремы Биаласа, в частности из работы [14], где рассматривается матрица

$$A = \Omega_r = \begin{bmatrix} -0.5 - r & -12.06 & -0.06 \\ -0.25 & 0 & 1 \\ 0.25 & -4 & -1 \end{bmatrix},$$
 (4)

где $r \in [0,1]$, для которого подтверждена справедливость теоремы.

Но в случае матрицы $A = \Omega_r$ из [14] можно наглядно рассмотреть справедливость приведенного выше замечания к теореме, что показано ниже в *Примере 1*.

Примеры. Рассмотрим примеры, которые наглядно поясняют смысл *Замечания* к *Теореме*.

Пример 1. Покажем, что система (1) с интервальной матрицей вида $A = \Omega_r$ (4), которая не обладает полным набором из четырех характеристических полиномов Харитонова, является неопределенной робастности. Действительно, если положим $r_1 = 0.5 - \sqrt{0.06}$, $r_2 = 0.5 + \sqrt{0.06}$, то как известно [14] система (1.1) является неустойчивой при $r_1 < r < r_2$, а в интервалах $r \in [0, r_1)$ и $r \in (r_2, 1]$ эта система устойчива. Если теперь предположить, что коэффициенты характеристического полинома (3) не зависят друг

от друга и мы имеем четыре угловых полинома системы (1), то нетрудно вычислить, что только в малых частях указанных выше интервалов робастной устойчивости $r \in [0, r_1)$ и $r \in (r_2, 1]$ имеет место устойчивости всех четырех характеристических полиномов, а именно при $r \in [0, 0,475)$ и $r \in (0,9617, 1]$.

Так, например, для интервала $r \in [0, r_1)$ имеем следующие четыре угловых полинома:

$$f_1(\lambda) = \lambda^3 + 1.5 \lambda^2 + 1.5 \lambda + (2.06 + 4r_1), f_2(\lambda) = \lambda^3 + 1.5 \lambda^2 + (1.5 + r_1) \lambda + (2.06 + 4r_1), f_3(\lambda) = \lambda^3 + (1.5 + r_1) \lambda^2 + 1.5 \lambda + 2.06, f_4(\lambda) = \lambda^3 + (1.5 + r_1) \lambda^2 + (1.5 + r_1) \lambda + 2.06,$$

из которых два первых неустойчивы, а следующие два устойчивы.

Данный пример показывает, что из-за зависимости между коэффициентами характеристического полинома (3), здесь действительно имеет место неполный набор из двух угловых полиномов, и мы не можем однозначно установить интервалы робастной устойчивости системы (1), как и следовало согласно Замечания к Теореме.

Пример 2. Пусть задан характеристический полином интервальной системы (1) в виде

$$f(\lambda) = \lambda^3 + 1.5 \lambda^2 + 2.5 \lambda + b_3,$$
 (5)

где коэффициент $b_3 \in [2, 3]$. Такой случай системы (1) возможен, например, при Фробениусовой или сопровождающей форме матрицы A.

Тогда, четыре угловых характеристических полинома системы (1) будут следующие:

$$\begin{split} f_1\left(\lambda\right) &= \lambda^3 + 1,5 \; \lambda^2 + 2,5 \; \lambda + 3, \\ f_3\left(\lambda\right) &= \lambda^3 + 1,5 \; \lambda^2 + 2,5 \; \lambda + 2, \end{split} \qquad \qquad f_2\left(\lambda\right) &= \lambda^3 + 1,5 \; \lambda^2 + 2,5 \; \lambda + 3, \\ f_4\left(\lambda\right) &= \lambda^3 + 1,5 \; \lambda^2 + 2,5 \; \lambda + 2. \end{split}$$

Как нетрудно видеть, в данном случае все четыре характеристических полинома системы (1) устойчивы ($b_1b_2 > b_3$) и система (1) робастно устойчива. Если же, положим $b_3 \in [2,06,4,06]$, то в этом случае, первые два полинома $f_1(\lambda)$ и $f_2(\lambda)$ неустойчивы, а два следующих $f_3(\lambda)$ и $f_4(\lambda)$ устойчивы, а следовательно система (1) робастно неустойчива.

В этом примере мы рассмотрели два случая интервальной системы (1), когда имеются две пары совпадающих или кратных характеристических полиномов, но при этом имеются полные наборы четырех полиномов Харитонова, в отличие от случая системы (1) с матрицей $A = \Omega_r$ (4), где нет полного набора из четырех угловых характеристических полиномов, а только два угловых полинома, вследствие жесткой зависимости коэффициентов b_i , i=1,2,3 от параметра r. Поэтому, в обеих случаях рассматриваемого *Примера 2* в соответствии с *Замечанием* к *Теореме* можно сделать вполне определенный вывод о робастной устойчивости или неустойчивости интервальной системы (1) с характеристическим полиномом (5), в то время как в случае с матрицей вида $A = \Omega_r$ мы определенный вывод о робастной устойчивости не можем сделать (здесь следует отметить, что в работе [7] вывод по данному случаю сделан неверный).

II. Дискретные системы

Как известно, публикация работы [12] дала импульс для поиска многими исследователями дискретных аналогов теорем Харитонова [2-6, 8]. Так в работе [4]

указано, что «дискретный вариант харитоновского условия четырех многочленов отсутствует». Но здесь же отмечается, что в настоящее время получены [16, 17] дискретные аналоги слабой и сильной теорем Харитонова. Но эти аналоги теорем Харитонова имеют определенные ограничения, накладываемые на интервальные области коэффициентов [4]. Эти ограничения были сняты в работах [8,9], где получены аналоги теорем Харитонова с использованием теоремы Шура. При этом сформулированы теоремы, являющиеся дискретными аналогами результатов работы [7] по интервальным матрицам и многогранникам матриц.

Далее, рассматривается обобщение результатов, полученных в работах [8,9] с учетом выводов приведенных выше для непрерывных систем.

Основные результаты. Для дискретных систем, используя z - преобразование, получаем интервальный характеристический полином

n

$$f(z) = \det(zI - A) = \sum b_{\hat{i}} z^{n - \hat{i}}, \ b_{\hat{i}} \in [\underline{b}_{\hat{i}}, b_{\hat{i}}], \underline{b}_{\hat{i}} \leq b_{\hat{i}}.$$

$$i = 0$$

$$(6)$$

Для определения условий устойчивости воспользуемся теоремой Шура, т.е. условиями вида

$$|b_0| > |bn|, \tag{7}$$

для последовательности полиномов, определяемых рекуррентными соотношениями

$$f_i(z) = \left[b_0 f(z) - b_n f(\frac{1}{z}) z^n\right] / z, \dots, f_{i+1}(z) = \left[b_{0,i} f_i(z) - b_{n,i} f_i(1/z) z^{n-1}\right] / z, \tag{8}$$

где $b_{0,i}, b_{n,i}$ - соответственно старший и младший коэффициенты і-го полинома fi(z).

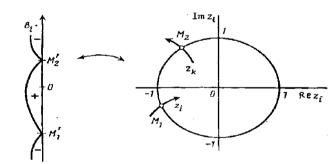


Рис. 1. Точки (M_1', M_2') и интервалы перемежаемости $(-\infty, M_1')^-, (M_1', M_2')^+, (M_2', +\infty)^-$ — для козффициента h_i

Определение. Точками перемежаемости для коэффициентов b_i , i=0,n будем называть — точки на действительной оси, в которых происходят переходы корней полинома (6), через единичную окружность на плоскости корней, а *интервалами* перемежаемости — соответственно интервалы, в которых корни находятся либо внутри, либо вне единичного круга (рис.1).

В работе [8] сформулированы основные результаты по определению условий робастной устойчивости дискретных интервальных систем в виде соответствующих теорем 1-6. При этом следует отметить, что, как указано выше на с.2, для случая непрерывных систем [7], справедливость *теоремы 5* имеет ограничение, обусловленное Замечанием к теореме работы [7], т.е. *теорема 5* верна при полном наборе из 4-х различных полиномов Харитонова.

Справедливость результатов [8,9] относительно аналога сильной теоремы Харитонова продемонстрированы на известных контрпримерах из [4] и др.

Таким образом, алгоритм определения робастной устойчивости дискретных интервальных динамических систем будет следующим.

- 1. Пользуясь формулами леммы к теореме 1 [8], оптимизацией по элементам $a_{ij} \in [\underline{a}_{ij}, \overline{a}_{ij},], i, j = \overline{1,n},$ интервальной матрицы A, находятся сепаратные угловые коэффициенты $b_i \in [\underline{b}_i, \overline{b_i}], i = \overline{0,n},$ интервального характеристического полинома (6).
- 2. Определяются четыре полинома Харитонова, соответствующие интервальному полиному (6)

$$f_{1}(z): \{\underline{b}_{0}, \underline{b}_{1}, \overline{b}_{2}, \overline{b}_{3}, \underline{b}_{4}, ..., \}, f_{2}(z): \{\underline{b}_{0}, \overline{b}_{1}, \overline{b}_{2}, \underline{b}_{3}, \underline{b}_{4}, ..., \}; f_{3}(z): \{\overline{b}_{0}, \underline{b}_{1}, \underline{b}_{2}, \overline{b}_{3}, \underline{b}_{4}, ..., \}, f_{4}(z): \{\overline{b}_{0}, \overline{b}_{1}, \underline{b}_{2}, \underline{b}_{3}, \overline{b}_{4}, ..., \};$$

- 3. Составляются п неравенств вида (П.2), указанных в Приложении работы [8].
- 4.Относительно каждого коэффициента b_i , $i = \overline{0,n}$, считая остальные коэффициенты фиксированными, последовательно находятся точки перемежаемости для всех четырех полиномов Харитонова и по всем п неравенствам (см. п.3), начиная с меньших порядков.
- 5. Если все точки перемежаемости по всем коэффициентам b_i , $i = \overline{0,n}$, не принадле- жат заданным интервалам, то исходный полином (система) устойчив, в противном случае неустойчив.
- **В** заключении к данной работе, рассмотрим некоторые сравнительные характеристики изложенных здесь результатов и известных результатов, полученных в работах широко известных авторов алгебраического направления проблемы робастной устойчивости [2-5, 9-11, 14-17].
- В работах [2-4,10] представлены обзоры и постановки задач робастной устойчивости, которые были вызваны известной работой В.Л.Харитонова [12].
- В работе Б.Т.Поляка, П.С.Щербакова [11] предложено понятие сверхустойчивости линейных систем управления. При этом сверхустойчивые системы обладают свойствами выпуклости, допускающими простые решения многих классических задач теории управления, в частности, задачи робастной стабилизации при матричной неопределенности. Но существенным ограничением таких систем является практическая узость их класса, определяемого условиями наличия доминирующих диагональных элементов матрицы системы с отрицательными величинами [1].

В работе В.М.Кунцевича [5] получены интересные результаты по робастной устойчивости для линейных дискретных систем. При этом матрица системы задается в классе сопровождающих характеристический полином системы, т.е. в Фробениусовой форме [1], что также сужает класс рассматриваемых реальных систем.

В работах В.R.Вагтіsh и др. [14] предложены контрпримеры к теореме Биаласа [15], которые аннулированы в работе [7].

В работах М.Маnsour и др. [16, 17] получены дискретные аналоги слабой и сильной теорем Харитонова [12], которые имеют ограничения, накладываемые на интервальные области коэффициентов или, применяется [4,6,8,] непростая процедура проектирования корней полиномов на отрезок [-1, 1].

Использованная литература

- 1. Гантмахер Ф.Р. Теория матриц. M.: Hayкa, 1966. 576 с.
- 2. Гусев Ю.М., Ефанов В.Н., Крымский В.Г. и др. Анализ и синтез линейных интервальных динамических систем (состояние проблемы). І.Анализ с использованием интервальных характеристических полиномов// Изв. АН СССР. Техн. кибернетика. 1991 №1. С.3-23.
- 3. Гусев Ю.М., Ефанов В.Н., Крымский В.Г. и др. Анализ и синтез линейных интервальных динамических систем (состояние проблемы). II. Анализ с использованием интервальных характеристических полиномов// Изв. АН СССР. Техн. кибернетика. 1991. №2. С.3-30.
 - 4. Джури Э.И. Робастность дискретных систем //А и Т. 1990. №5. С.4-28.
- 5. Кунцевич В.М. Управление в условиях неопределенности: гарантированные результаты в задачах управления и идентификации. Киев: Наук. думка, 2006. –264 с.
- 6. Несенчук А.А., Федорович С.М. Метод параметрического синтеза интервальных систем на основе корневых годографов полиномов Харитонова // АиТ, N2. 2008. С. 37-46.
- 7. Оморов Р.О. Робастность интервальных динамических систем. І.Робастность непрерывных линейных интервальных динамических систем//Теория и системы управления. 1995. №1. С.22-27.
- 8. Оморов Р.О. Робастность интервальных динамических систем. II.Робастность дискретных линейных интервальных динамических систем//Теория и системы управления. 1995. №3. С.3-7.
- 9. Оморов Р.О. О дискретном аналоге теоремы Харитонова //Наука и новые технологии, 2002, №3. С. 5-10.
- 10. Поляк Б.Т., Цыпкин Я.З. Робастная устойчивость линейных систем// Итоги науки и техники. Сер. Техническая кибернетика. Т.32.М.: ВИНИТИ. 1991.-Т.32
- 11. Поляк Б.Т., Щербаков П.С. Робастная устойчивость и управление. М.: Наука, 2002. 384 с.
- 12. Харитонов В.Л. Об асимптотической устойчивости положения равновесия семейства систем линейных дифференциальных уравнений//Дифференц. Уравнения. 1978. Т.14. № 11.
- 13. Химмельблау Д. Прикладное нелинейное программирование / Пер.с англ. –М.: Мир. 1975. 534 с.
- 14. Barmish B.R., Hollot C.V. Counter-example to a recent result on the stability by S. Bialas // Int. J. Control. 1984. V.39. N = 5. P. 1103-1104.
- 15. Bialas S. A necessary and sufficient condition for stability of internal matrices// Int. J. Control 1983. V.37. №4.- P. 717-722.
- 16. Kraus F.J., Anderson B.D.O., Jury E.I., Mansour M. On the robustness of low order Shur polynomials // IEEE Trans. Circ. Systems. 1988. V. CAS-35, N5.
- 17. Mansour M., Kraus F.J. On robust stability of Shur polynomials // Report N 87-05, Inst. Autom. Cont. Ind. Electronics, Swiss, Fed. Inst. Tech. (ETH). Zurich, 1987.
- 18. Rohn J. Regularity of Interval Matrices and Theorems of Alternatives // Reliable Computing (2006) 12. P. 99-105.