АВТОМАТИЗИРОВАННЫЙ АНАЛИЗ ДИНАМИКИ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ С УЧЕТОМ УПРУГИХ СВОЙСТВ ЗВЕНЬЕВ

Дракунов Ю.М., Тулешов Е.А.

Институт механики и машиноведения, Алматы, Казахстан, eakr.info@gmail.com

Аннотация: Приведены численные расчеты и их сравнение с экспериментальными данными по динамической модели работы двигателя внутреннего сгорания. Ключевые слова: потенциальная энергия, термодинамическое давление, шатун, диаграмма, кривошипно-ползунный механизм, интеграл уравнения.

AUTOMATED ANALYSIS OF DYNAMICS INTERNAL COMBUSTION ENGINE TAKING INTO ACCOUNT THE ELASTIC PROPERTIES OF THE LINKS

Drakunov Yu.M., Tuleshov E.A.

Institute of mechanics and machine science, Almaty, Kazakhstan

Annotation: Numerical calculations and their comparison with experimental data on the dynamic model of the internal combustion engine are presented.

Key words: potential energy, thermodynamic pressure, connecting rod, diagram, crankslide mechanism, integral of the equation.

Схема кривошипно-ползунного механизма ДВС, диаграмма работы двигателя и его динамическая модель приведены на рис. 1, а на верхнем правом углу. Упругими элементами модели ДВС являются коленчатый вал, работающий на кручение и шатун, испытывающий деформации растяжения/сжатия.

Приведенные параметры c_n и c'_n при условии, что шатун и вал двигателя являются упругими, определяются из формул, полученных из равенства потенциальных энергий звена приведения и исходного механизма

Уравнение для дополнительной неизвестной величины – термодинамического давления – выводится из уравнения сохранения энергии и имеет вид [2]

 $\frac{dP_t}{dt} = -\frac{\kappa P_t}{V} \int \vec{v} \cdot d\vec{S} + \frac{\kappa - 1}{V} \left[\int \lambda \nabla T \cdot d\vec{S} + Q \int \dot{w} dV \right]$ здесь $V = S_p L$ – объем камеры сгорания; S = ee поверхносты, v – скорость газа; $Q = -\sum v_i h_i^0$

Уравнение (2) является достаточно общим – не зависит от формы области и пригодно для расчетов как ламинарного, так и турбулентного течений с соответствующими коэффициентами переносов и законов горения [2].

Несложные вычисления показывают, что на такте впуска этот член вследствие

Д

И

-
- Н
- а м
- 1.61

После открытия выпускного клапана происходит изоэнтропическое истечение газа из камеры сгорания и первый интеграл уравнении (2) имеет вид.

$$\int_{S} \overline{v} \cdot d\overline{S} = v_e S_e + v_p S_p, \text{ где } v_e S_e = \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa+1}{2(\kappa-1)}} \sqrt{\kappa} S_e \sqrt{\frac{P_t}{\rho}}; \quad \rho = \rho_e \left(\frac{P_t}{P_e}\right)^{1/\kappa}$$
г
д е

 $f \ldots d\eta = M_{f}\pi\omega \left[\pi(\alpha - \alpha_{0})\right]$

где η - доля выгораемого топлива; M_f - масса топлива, сгорающего на одном цикле; α_0, α_1 - начальный и конечный углы горения топлива.

Масса топлива *M_f* может быть определена из реакции окисления стехиометрической бензино-воздушной смеси.

$$4C_7H_{15} + 43(O_2 + 4N_2) = 28CO_2 + 30H_2O + 172N_2$$

Окончательно дифференциальные уравнения для давления P_t и плотности ρ в камере сгорания при $0 \le \alpha \le 4\pi$ могут быть записаны в следующем виде

$$\dot{P}_{t} = \frac{dP_{t}}{dt} = \begin{cases} 0, \quad \text{если} \ (\alpha < \alpha_{+}) \lor [(\alpha > \alpha_{-}) \land (P_{t} < 2P_{0})] \\ -\kappa P_{t} \left(\frac{c}{LS_{p}} \sqrt{\frac{P_{t}}{\rho}} + x'\dot{\alpha}/L \right), \quad \text{если} \ (\alpha > \alpha_{-}) \land (P_{t} \ge 2P_{0}) \\ -\kappa x' P_{t} \dot{\alpha}/L, \quad \text{если} \ \alpha_{+} \le \alpha \le \alpha_{0}, \alpha_{1} \le \alpha \le \alpha_{-} \\ -\kappa x' P_{t} \dot{\alpha}/L + \frac{\kappa - 1}{LS_{p}} \frac{QM_{f} \dot{\alpha}\pi}{2(\alpha_{1} - \alpha_{0})} \sin \left[\frac{\pi(\alpha - \alpha_{0})}{\alpha_{1} - \alpha_{0}} \right], \quad \text{если} \ \alpha_{0} < \alpha < \alpha_{1} \end{cases}$$
(3)

где

$$\dot{\rho} = \frac{d\rho}{dt} = \begin{cases} 0, & \text{если} (\alpha < \alpha_{+}) \lor [(\alpha > \alpha_{-}) \land (P_{t} < 2P_{0})] \\ -\rho \left(\frac{c}{LS_{p}} \sqrt{\frac{P_{t}}{\rho}} + x'\dot{\alpha}/L\right), & \text{если} (\alpha > \alpha_{-}) \land (P_{t} \ge 2P_{0}) \\ -\rho x'\dot{\alpha}/L, & \text{если} \alpha_{+} \le \alpha \le \alpha_{-} \end{cases}$$
(4)

$$c = \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa+1}{2(\kappa-1)}} S_e \sqrt{\kappa} .$$

Примем за обобщенные координаты углы поворота маховика φ и кривошипа α .

На основе уравнений Лагранжа второго рода дифференциальные уравнения движения механической части двигателя внутреннего сгорания с упругой связью запишем в виде системы

$$\begin{cases} J\ddot{\varphi} + c_n(\varphi - \alpha) = -M_c \\ J_n\ddot{\alpha} + \frac{1}{2}J'_n\dot{\alpha}^2 - c_n(\varphi - \alpha) + \frac{1}{2}c'_n(\varphi - \alpha)^2 = [(P_t - P_k)S_p + m_1g]x' \end{cases}$$
(5)

В этих уравнениях Ј - момент инерции маховой массы;

 c_n, c_n' - приведенная жесткость вала и ее производная по углу поворота кривошипа α ;

 J_n, J'_n - приведенный момент инерции механизма к кривошипу и его производная;

 m_1 - масса поршня;

М_с - момент сопротивления на валу двигателя;

 P_t - давление в камере сгорании (КС);

 P_k - давление в картере;

 S_p

площадь-поскорение свободного падения.

Таким образом, динамика двигателя внутреннего сгорания описывается системой нелинейных дифференциальных уравнений (5), (3) и (4) с начальными у

На рисунке 1 приведено диалоговое окно системы компьютерного моделирования по исследованию процесса работы ДВС.

Слева, на рисунке 1,а изображены модель ДВС с циклограммой движения и панель для задания исходных данных, а справа, на рисунке 1,б, отображается процесс движения кривошипно-ползунного механизма в динамическом режиме.

Имеется возможность ключения /отключения флага для учета упругости звеньев в динамической модели.

По нажатию кнопки «Динамика» происходит решение вышеуказанных дифференциальных уравнений и отображение полученных результатов в численной и графической формах.

По нажатию кнопки «Графики» отображается диалоговое окно с графическим представлением характерных кинематических и динамических параметров (рисунок 1,б). Численные результаты записываются в текстовой файл.

Рис. 1. Диалоговые окна АС исследования ДВС с учетом упругих свойств звеньев

Рис. 2. Индикаторная диаграмма и поп-меню для расчета параметров

На диалоговом окне можно получит рассчитанную индикаторную диаграмму для давления в КС (рисунок 2), которая показывается на экране при нажатии кнопки «Диаграмма», а также представлено всплывающее меню по настройке методов интегрирования и расчета некоторых важных параметров: податливостей упругих элементов [4];

основных параметров сжигаемого топлива и некоторых других динами-ческих параметров.

Система показывает фрагменты графического интерфейса, отображающие колебание упругого вала ДВС и характер изменения угловой скорости коленчатого вала без учета и с учетом упругих параметров исследуемой динамической модели, как это представлены на рисунке 3.

Далее в системе проводится оценка прочности упругого вала и шатуна.

Проведенные численные расчеты и их сравнение с известными экспериментальными данными подтверждают достоверность предложенной динамической модели работы двигателя внутреннего сгорания.

Рис. 3. Колебание упругого вала и изменение угловой скорости за счет упругости

Как показали компьютерные исследования на такте расширения (горения) происходит резкое увеличение давления в КС и угловой скорости вала двигателя и что с уменьшением продолжительности горения происходит увеличение мощности двигателя. На выше названные параметры так же значительно сказывается и учет упругости коленчатого вала ДВС.

Использованная литературы

1. Вейц В.Л., Кочура А.Е. Динамика машинных агрегатов с двигателями внутреннего сгорания. – Машиностроение, – Л., 1976.

2. Дракунов Ю.М., Калтаев А. Динамическая модель работы четырехтактного одноцилиндрового ДВС //Вестник КазНТУ – №1, – Алматы, 1996. – С.15-19. 3

Тулешов А.К., Дракунов Ю.М. Моделирование динамики и оценка прочности (кипіалел А.в. Бут бетеритатіоорание // Материальи// Межстінарfloway // Reating ellowi конференции «Повышение качества, надежности и долговечности технических оистем и технологических процессов», Хугада, – Египет, 2009. – С.56-62.

- m
- b
- u
- S

t

i

0

n

a

n

d